3.316 \(\int \frac {\text {sech}^3(c+d x)}{a+b \sinh (c+d x)} \, dx\)

Optimal. Leaf size=119 \[ \frac {a \left (a^2+3 b^2\right ) \tan ^{-1}(\sinh (c+d x))}{2 d \left (a^2+b^2\right )^2}+\frac {\text {sech}^2(c+d x) (a \sinh (c+d x)+b)}{2 d \left (a^2+b^2\right )}+\frac {b^3 \log (a+b \sinh (c+d x))}{d \left (a^2+b^2\right )^2}-\frac {b^3 \log (\cosh (c+d x))}{d \left (a^2+b^2\right )^2} \]

[Out]

1/2*a*(a^2+3*b^2)*arctan(sinh(d*x+c))/(a^2+b^2)^2/d-b^3*ln(cosh(d*x+c))/(a^2+b^2)^2/d+b^3*ln(a+b*sinh(d*x+c))/
(a^2+b^2)^2/d+1/2*sech(d*x+c)^2*(b+a*sinh(d*x+c))/(a^2+b^2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2668, 741, 801, 635, 203, 260} \[ \frac {b^3 \log (a+b \sinh (c+d x))}{d \left (a^2+b^2\right )^2}+\frac {a \left (a^2+3 b^2\right ) \tan ^{-1}(\sinh (c+d x))}{2 d \left (a^2+b^2\right )^2}-\frac {b^3 \log (\cosh (c+d x))}{d \left (a^2+b^2\right )^2}+\frac {\text {sech}^2(c+d x) (a \sinh (c+d x)+b)}{2 d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^3/(a + b*Sinh[c + d*x]),x]

[Out]

(a*(a^2 + 3*b^2)*ArcTan[Sinh[c + d*x]])/(2*(a^2 + b^2)^2*d) - (b^3*Log[Cosh[c + d*x]])/((a^2 + b^2)^2*d) + (b^
3*Log[a + b*Sinh[c + d*x]])/((a^2 + b^2)^2*d) + (Sech[c + d*x]^2*(b + a*Sinh[c + d*x]))/(2*(a^2 + b^2)*d)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 741

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(m + 1)*(a*e + c*d*x)*(
a + c*x^2)^(p + 1))/(2*a*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[1/(2*a*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*
Simp[c*d^2*(2*p + 3) + a*e^2*(m + 2*p + 3) + c*e*d*(m + 2*p + 4)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a
, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 801

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
(d + e*x)^m*(f + g*x))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 2668

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Integer
Q[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\text {sech}^3(c+d x)}{a+b \sinh (c+d x)} \, dx &=\frac {b^3 \operatorname {Subst}\left (\int \frac {1}{(a+x) \left (-b^2-x^2\right )^2} \, dx,x,b \sinh (c+d x)\right )}{d}\\ &=\frac {\text {sech}^2(c+d x) (b+a \sinh (c+d x))}{2 \left (a^2+b^2\right ) d}-\frac {b \operatorname {Subst}\left (\int \frac {a^2+2 b^2+a x}{(a+x) \left (-b^2-x^2\right )} \, dx,x,b \sinh (c+d x)\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac {\text {sech}^2(c+d x) (b+a \sinh (c+d x))}{2 \left (a^2+b^2\right ) d}-\frac {b \operatorname {Subst}\left (\int \left (-\frac {2 b^2}{\left (a^2+b^2\right ) (a+x)}+\frac {-a^3-3 a b^2+2 b^2 x}{\left (a^2+b^2\right ) \left (b^2+x^2\right )}\right ) \, dx,x,b \sinh (c+d x)\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac {b^3 \log (a+b \sinh (c+d x))}{\left (a^2+b^2\right )^2 d}+\frac {\text {sech}^2(c+d x) (b+a \sinh (c+d x))}{2 \left (a^2+b^2\right ) d}-\frac {b \operatorname {Subst}\left (\int \frac {-a^3-3 a b^2+2 b^2 x}{b^2+x^2} \, dx,x,b \sinh (c+d x)\right )}{2 \left (a^2+b^2\right )^2 d}\\ &=\frac {b^3 \log (a+b \sinh (c+d x))}{\left (a^2+b^2\right )^2 d}+\frac {\text {sech}^2(c+d x) (b+a \sinh (c+d x))}{2 \left (a^2+b^2\right ) d}-\frac {b^3 \operatorname {Subst}\left (\int \frac {x}{b^2+x^2} \, dx,x,b \sinh (c+d x)\right )}{\left (a^2+b^2\right )^2 d}+\frac {\left (a b \left (a^2+3 b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{b^2+x^2} \, dx,x,b \sinh (c+d x)\right )}{2 \left (a^2+b^2\right )^2 d}\\ &=\frac {a \left (a^2+3 b^2\right ) \tan ^{-1}(\sinh (c+d x))}{2 \left (a^2+b^2\right )^2 d}-\frac {b^3 \log (\cosh (c+d x))}{\left (a^2+b^2\right )^2 d}+\frac {b^3 \log (a+b \sinh (c+d x))}{\left (a^2+b^2\right )^2 d}+\frac {\text {sech}^2(c+d x) (b+a \sinh (c+d x))}{2 \left (a^2+b^2\right ) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 104, normalized size = 0.87 \[ \frac {b \left (a^2+b^2\right ) \text {sech}^2(c+d x)+2 a \left (a^2+3 b^2\right ) \tan ^{-1}\left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )+a \left (a^2+b^2\right ) \tanh (c+d x) \text {sech}(c+d x)+2 b^3 (\log (a+b \sinh (c+d x))-\log (\cosh (c+d x)))}{2 d \left (a^2+b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^3/(a + b*Sinh[c + d*x]),x]

[Out]

(2*a*(a^2 + 3*b^2)*ArcTan[Tanh[(c + d*x)/2]] + 2*b^3*(-Log[Cosh[c + d*x]] + Log[a + b*Sinh[c + d*x]]) + b*(a^2
 + b^2)*Sech[c + d*x]^2 + a*(a^2 + b^2)*Sech[c + d*x]*Tanh[c + d*x])/(2*(a^2 + b^2)^2*d)

________________________________________________________________________________________

fricas [B]  time = 0.50, size = 893, normalized size = 7.50 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

((a^3 + a*b^2)*cosh(d*x + c)^3 + (a^3 + a*b^2)*sinh(d*x + c)^3 + 2*(a^2*b + b^3)*cosh(d*x + c)^2 + (2*a^2*b +
2*b^3 + 3*(a^3 + a*b^2)*cosh(d*x + c))*sinh(d*x + c)^2 + ((a^3 + 3*a*b^2)*cosh(d*x + c)^4 + 4*(a^3 + 3*a*b^2)*
cosh(d*x + c)*sinh(d*x + c)^3 + (a^3 + 3*a*b^2)*sinh(d*x + c)^4 + a^3 + 3*a*b^2 + 2*(a^3 + 3*a*b^2)*cosh(d*x +
 c)^2 + 2*(a^3 + 3*a*b^2 + 3*(a^3 + 3*a*b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 4*((a^3 + 3*a*b^2)*cosh(d*x +
c)^3 + (a^3 + 3*a*b^2)*cosh(d*x + c))*sinh(d*x + c))*arctan(cosh(d*x + c) + sinh(d*x + c)) - (a^3 + a*b^2)*cos
h(d*x + c) + (b^3*cosh(d*x + c)^4 + 4*b^3*cosh(d*x + c)*sinh(d*x + c)^3 + b^3*sinh(d*x + c)^4 + 2*b^3*cosh(d*x
 + c)^2 + b^3 + 2*(3*b^3*cosh(d*x + c)^2 + b^3)*sinh(d*x + c)^2 + 4*(b^3*cosh(d*x + c)^3 + b^3*cosh(d*x + c))*
sinh(d*x + c))*log(2*(b*sinh(d*x + c) + a)/(cosh(d*x + c) - sinh(d*x + c))) - (b^3*cosh(d*x + c)^4 + 4*b^3*cos
h(d*x + c)*sinh(d*x + c)^3 + b^3*sinh(d*x + c)^4 + 2*b^3*cosh(d*x + c)^2 + b^3 + 2*(3*b^3*cosh(d*x + c)^2 + b^
3)*sinh(d*x + c)^2 + 4*(b^3*cosh(d*x + c)^3 + b^3*cosh(d*x + c))*sinh(d*x + c))*log(2*cosh(d*x + c)/(cosh(d*x
+ c) - sinh(d*x + c))) - (a^3 + a*b^2 - 3*(a^3 + a*b^2)*cosh(d*x + c)^2 - 4*(a^2*b + b^3)*cosh(d*x + c))*sinh(
d*x + c))/((a^4 + 2*a^2*b^2 + b^4)*d*cosh(d*x + c)^4 + 4*(a^4 + 2*a^2*b^2 + b^4)*d*cosh(d*x + c)*sinh(d*x + c)
^3 + (a^4 + 2*a^2*b^2 + b^4)*d*sinh(d*x + c)^4 + 2*(a^4 + 2*a^2*b^2 + b^4)*d*cosh(d*x + c)^2 + 2*(3*(a^4 + 2*a
^2*b^2 + b^4)*d*cosh(d*x + c)^2 + (a^4 + 2*a^2*b^2 + b^4)*d)*sinh(d*x + c)^2 + (a^4 + 2*a^2*b^2 + b^4)*d + 4*(
(a^4 + 2*a^2*b^2 + b^4)*d*cosh(d*x + c)^3 + (a^4 + 2*a^2*b^2 + b^4)*d*cosh(d*x + c))*sinh(d*x + c))

________________________________________________________________________________________

giac [B]  time = 0.59, size = 282, normalized size = 2.37 \[ \frac {\frac {4 \, b^{4} \log \left ({\left | b {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} + 2 \, a \right |}\right )}{a^{4} b + 2 \, a^{2} b^{3} + b^{5}} - \frac {2 \, b^{3} \log \left ({\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{2} + 4\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {{\left (\pi + 2 \, \arctan \left (\frac {1}{2} \, {\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )} e^{\left (-d x - c\right )}\right )\right )} {\left (a^{3} + 3 \, a b^{2}\right )}}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {2 \, {\left (b^{3} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{2} + 2 \, a^{3} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} + 2 \, a b^{2} {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} + 4 \, a^{2} b + 8 \, b^{3}\right )}}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} {\left ({\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{2} + 4\right )}}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

1/4*(4*b^4*log(abs(b*(e^(d*x + c) - e^(-d*x - c)) + 2*a))/(a^4*b + 2*a^2*b^3 + b^5) - 2*b^3*log((e^(d*x + c) -
 e^(-d*x - c))^2 + 4)/(a^4 + 2*a^2*b^2 + b^4) + (pi + 2*arctan(1/2*(e^(2*d*x + 2*c) - 1)*e^(-d*x - c)))*(a^3 +
 3*a*b^2)/(a^4 + 2*a^2*b^2 + b^4) + 2*(b^3*(e^(d*x + c) - e^(-d*x - c))^2 + 2*a^3*(e^(d*x + c) - e^(-d*x - c))
 + 2*a*b^2*(e^(d*x + c) - e^(-d*x - c)) + 4*a^2*b + 8*b^3)/((a^4 + 2*a^2*b^2 + b^4)*((e^(d*x + c) - e^(-d*x -
c))^2 + 4)))/d

________________________________________________________________________________________

maple [B]  time = 0.00, size = 468, normalized size = 3.93 \[ \frac {b^{3} \ln \left (\left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) b -a \right )}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}-\frac {\left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {\left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {2 \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{3}}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a \,b^{2}}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {b^{3} \ln \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}+\frac {\arctan \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )}+\frac {3 \arctan \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}}{d \left (a^{4}+2 a^{2} b^{2}+b^{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^3/(a+b*sinh(d*x+c)),x)

[Out]

1/d*b^3/(a^4+2*a^2*b^2+b^4)*ln(tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1/2*d*x+1/2*c)*b-a)-1/d/(a^4+2*a^2*b^2+b^4)/(tan
h(1/2*d*x+1/2*c)^2+1)^2*tanh(1/2*d*x+1/2*c)^3*a^3-1/d/(a^4+2*a^2*b^2+b^4)/(tanh(1/2*d*x+1/2*c)^2+1)^2*tanh(1/2
*d*x+1/2*c)^3*a*b^2-2/d/(a^4+2*a^2*b^2+b^4)/(tanh(1/2*d*x+1/2*c)^2+1)^2*tanh(1/2*d*x+1/2*c)^2*a^2*b-2/d/(a^4+2
*a^2*b^2+b^4)/(tanh(1/2*d*x+1/2*c)^2+1)^2*tanh(1/2*d*x+1/2*c)^2*b^3+1/d/(a^4+2*a^2*b^2+b^4)/(tanh(1/2*d*x+1/2*
c)^2+1)^2*tanh(1/2*d*x+1/2*c)*a^3+1/d/(a^4+2*a^2*b^2+b^4)/(tanh(1/2*d*x+1/2*c)^2+1)^2*tanh(1/2*d*x+1/2*c)*a*b^
2-1/d/(a^4+2*a^2*b^2+b^4)*b^3*ln(tanh(1/2*d*x+1/2*c)^2+1)+1/d/(a^4+2*a^2*b^2+b^4)*arctan(tanh(1/2*d*x+1/2*c))*
a^3+3/d/(a^4+2*a^2*b^2+b^4)*arctan(tanh(1/2*d*x+1/2*c))*a*b^2

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 216, normalized size = 1.82 \[ \frac {b^{3} \log \left (-2 \, a e^{\left (-d x - c\right )} + b e^{\left (-2 \, d x - 2 \, c\right )} - b\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} d} - \frac {b^{3} \log \left (e^{\left (-2 \, d x - 2 \, c\right )} + 1\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} d} - \frac {{\left (a^{3} + 3 \, a b^{2}\right )} \arctan \left (e^{\left (-d x - c\right )}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} d} + \frac {a e^{\left (-d x - c\right )} + 2 \, b e^{\left (-2 \, d x - 2 \, c\right )} - a e^{\left (-3 \, d x - 3 \, c\right )}}{{\left (a^{2} + b^{2} + 2 \, {\left (a^{2} + b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{2} + b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

b^3*log(-2*a*e^(-d*x - c) + b*e^(-2*d*x - 2*c) - b)/((a^4 + 2*a^2*b^2 + b^4)*d) - b^3*log(e^(-2*d*x - 2*c) + 1
)/((a^4 + 2*a^2*b^2 + b^4)*d) - (a^3 + 3*a*b^2)*arctan(e^(-d*x - c))/((a^4 + 2*a^2*b^2 + b^4)*d) + (a*e^(-d*x
- c) + 2*b*e^(-2*d*x - 2*c) - a*e^(-3*d*x - 3*c))/((a^2 + b^2 + 2*(a^2 + b^2)*e^(-2*d*x - 2*c) + (a^2 + b^2)*e
^(-4*d*x - 4*c))*d)

________________________________________________________________________________________

mupad [B]  time = 2.20, size = 381, normalized size = 3.20 \[ \frac {\frac {2\,\left (a^2\,b+b^3\right )}{d\,{\left (a^2+b^2\right )}^2}+\frac {{\mathrm {e}}^{c+d\,x}\,\left (a^3+a\,b^2\right )}{d\,{\left (a^2+b^2\right )}^2}}{{\mathrm {e}}^{2\,c+2\,d\,x}+1}-\frac {\frac {2\,b}{d\,\left (a^2+b^2\right )}+\frac {2\,a\,{\mathrm {e}}^{c+d\,x}}{d\,\left (a^2+b^2\right )}}{2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1}-\frac {\ln \left ({\mathrm {e}}^{c+d\,x}+1{}\mathrm {i}\right )\,\left (2\,b+a\,1{}\mathrm {i}\right )}{2\,\left (-d\,a^2+2{}\mathrm {i}\,d\,a\,b+d\,b^2\right )}-\frac {\ln \left (1+{\mathrm {e}}^{c+d\,x}\,1{}\mathrm {i}\right )\,\left (a+b\,2{}\mathrm {i}\right )}{2\,\left (-1{}\mathrm {i}\,d\,a^2+2\,d\,a\,b+1{}\mathrm {i}\,d\,b^2\right )}+\frac {b^3\,\ln \left (2\,a^7\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c-16\,b^7-9\,a^2\,b^5-6\,a^4\,b^3-a^6\,b+16\,b^7\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}+a^6\,b\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}+18\,a^3\,b^4\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c+12\,a^5\,b^2\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c+9\,a^2\,b^5\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}+6\,a^4\,b^3\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}+32\,a\,b^6\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\right )}{d\,a^4+2\,d\,a^2\,b^2+d\,b^4} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)^3*(a + b*sinh(c + d*x))),x)

[Out]

((2*(a^2*b + b^3))/(d*(a^2 + b^2)^2) + (exp(c + d*x)*(a*b^2 + a^3))/(d*(a^2 + b^2)^2))/(exp(2*c + 2*d*x) + 1)
- ((2*b)/(d*(a^2 + b^2)) + (2*a*exp(c + d*x))/(d*(a^2 + b^2)))/(2*exp(2*c + 2*d*x) + exp(4*c + 4*d*x) + 1) - (
log(exp(c + d*x) + 1i)*(a*1i + 2*b))/(2*(b^2*d - a^2*d + a*b*d*2i)) - (log(exp(c + d*x)*1i + 1)*(a + b*2i))/(2
*(b^2*d*1i - a^2*d*1i + 2*a*b*d)) + (b^3*log(2*a^7*exp(d*x)*exp(c) - 16*b^7 - 9*a^2*b^5 - 6*a^4*b^3 - a^6*b +
16*b^7*exp(2*c)*exp(2*d*x) + a^6*b*exp(2*c)*exp(2*d*x) + 18*a^3*b^4*exp(d*x)*exp(c) + 12*a^5*b^2*exp(d*x)*exp(
c) + 9*a^2*b^5*exp(2*c)*exp(2*d*x) + 6*a^4*b^3*exp(2*c)*exp(2*d*x) + 32*a*b^6*exp(d*x)*exp(c)))/(a^4*d + b^4*d
 + 2*a^2*b^2*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {sech}^{3}{\left (c + d x \right )}}{a + b \sinh {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**3/(a+b*sinh(d*x+c)),x)

[Out]

Integral(sech(c + d*x)**3/(a + b*sinh(c + d*x)), x)

________________________________________________________________________________________